报告题目:Uniqueness and numerical methods for the inverse scattering by a locally rough surface with buried obstacles
主讲人:李建樑
单位:湖南师范大学
时间:2月2日10:00-11:00
腾讯ID:100-119-696
密码:240202
摘要:Consider the problem of scattering of time-harmonic point sources by an infinite locally rough interface with bounded obstacles embedded in the lower half-space. The model problem is first reduced to an equivalent integral equation formulation defined in a bounded domain, where the well-posedness is obtained in $L^p$ by the classical Fredholm theory. Then a global uniqueness theorem is proved for the inverse problem of recovering the locally rough interface, the embedded obstacles and the wave number in the lower half-space by means of near-field measurements above the interface. Moreover, the linear sampling method and reverse time migration method are introduced to reconstruct both the interface and the embedded obstacle.
简介:李建樑,湖南师范大学BEVITOR伟德副教授,中国工业与应用数学学会反问题与成像专委会委员。2014年7月博士毕业于中国科学院数学与系统科学研究院应用数学所,2017年-2018年受国家留学基金委资助访问普渡大学数学系一年。主要研究领域为反散射问题的理论与数值方法、随机反散射问题的唯一性理论。在无穷曲面反散射问题的唯一性及数值方法,反随机源问题与反随机势问题的唯一性方面取得一系列成果。成果发表于SIAP、SIMA、SIIMS、MMS、IP、CPDE、JCP、IPI等期刊。主持国家自然科学基金面上项目、青年项目各1项。