报告题目:An adaptive moving mesh discontinuous Galerkin method for the radiative transfer equation
主讲人:张敏
单位:北京大学
时间:4月11日15:00
地点:学院一楼报告厅
摘要:The radiative transfer equation models the interaction of radiation with scattering and absorbing media and has important applications in various fields in science and engineering. It is an integro-differential equation involving time, frequency, space, and angular variables and contains an integral term in angular directions while being hyperbolic in space. The challenges for its numerical solution include the needs to handle with its high dimensionality, the presence of the integral term, and the development of discontinuities and sharp layers in its solution along spatial directions. In this talk, we present the solution of the radiative transfer equation using an adaptive moving mesh DG method for spatial discretization together with the discrete ordinate method for angular discretization. The former employs a dynamic mesh adaptation strategy based on moving mesh partial differential equations to improve computational accuracy and efficiency. Numerical examples are presented to demonstrate the mesh adaptation ability, accuracy, and efficiency of the method.
简介:张敏,北京大学大数据分析与应用技术国家工程实验室助理研究员,北京大学重庆大数据研究院基础软件科学研究中心研究员。2020年12月获厦门大学计算数学博士学位,2018年9月至2020年9月赴美国堪萨斯大学数学系联合培养。2021年1月至2023年4月在北京大学数学科学学院从事博士后研究工作、博雅博士后。获第十七届钟家庆数学奖、入选北京市科协2024-2026年度青年人才托举工程,现主持国家自然科学青年基金,参与科技部国家重点研发计划重点专项。主要研究兴趣包括辐射输运、双曲守恒律、系统模拟仿真等问题中的高精度保结构数值方法,在期刊SIAM J. Sci. Comput.、J. Comput. Phys.、J. Sci. Comput.等上发表论文10余篇。